Skip to main content
Log in

A mathematical model of nanoparticulate mixed oxide pseudocapacitors; part I: model description and particle size effects

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A mathematical model was developed to describe the performance of nanoparticulate mixed oxide pseudocapacitors based on RuO2–MO2 (M being another suitable transition metal) under galvanostatic charge/discharge regime. Both double layer and faradaic processes were taken into account. The effects of the active material’s particle size and composition were examined. Furthermore, the influence of discharge current on the extents of double layer and faradaic contributions was analyzed. The model analysis showed that the energy density declined upon increasing the volume fraction of larger particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer, New York

    Google Scholar 

  2. Zheng JP, Cygan PJ, Jow TR (1995) J Electrochem Soc 142:2699

    Article  CAS  Google Scholar 

  3. Jow TR, Zheng JP (1998) J Electrochem Soc 145:49

    Article  CAS  Google Scholar 

  4. Hu CC, Chen WC (2004) Electrochim Acta 49:3469

    Article  CAS  Google Scholar 

  5. Sugimoto W, Iwata H, Yokoshima K, Murakami Y, Takasu Y (2005) J Phys Chem B 109:7330

    Article  CAS  Google Scholar 

  6. Juodkazis K, Juodkazytė J, Šukienė V, Grigucevičienė A, Selskis A (2007) On the charge storage mechanism at RuO2/0.5 M H2SO4 interface. J Solid State Electrochem. DOI 10.1007/s10008-007-0476-0

  7. Hu CC, Wang CC (2003) J Electrochem Soc 150:A1079

    Article  CAS  Google Scholar 

  8. Prasad KR, Miura N (2004) J Power Sources 135:354

    Article  CAS  Google Scholar 

  9. Chen YS, Hu CC, Wu YT (2004) J Solid State Electrochem 8:467

    Article  CAS  Google Scholar 

  10. Zolfaghari A, Ataherian F, Ghaemi M, Gholami A (2007) Electrochim Acta 52:2806

    Article  CAS  Google Scholar 

  11. Liu KC, Anderson MA (1996) J Electrochem Soc 143:124

    Article  CAS  Google Scholar 

  12. Lin C, Ritter JA, Popov BN (1998) J Electrochem Soc 145:4097

    Article  CAS  Google Scholar 

  13. Xu MW, Bao SJ, Li HL (2007) J Solid State Electrochem 11:372

    Article  CAS  Google Scholar 

  14. Yong-gang W, Xiao-gang Z (2004) Electrochim Acta 49:1957

    Article  Google Scholar 

  15. Liu XM, Zhang XG (2004) Electrochim Acta 49:229

    Article  CAS  Google Scholar 

  16. Kuo SL, Wu NL (2003) Electrochem Solid-State Lett 6:A85

    Article  CAS  Google Scholar 

  17. Jeong YU, Manthiram A (2000) Electrochem Solid-State Lett 3:205

    Article  CAS  Google Scholar 

  18. Chen YS, Hu CC (2003) Electrochem Solid-State Lett 6:A210

    Article  CAS  Google Scholar 

  19. Prasad KR, Miura N (2004) Electrochemistry Communications 6:1004

    Article  Google Scholar 

  20. Nakayama M, Tanaka A, Sato Y, Tonosaki T, Ogura K (2005) Langmuir 21:5907

    Article  CAS  Google Scholar 

  21. Kuan-Xin H, Quan-Fu W, Xiao-Gang Z (2006) J Electrochem Soc 153:A1568

    Article  Google Scholar 

  22. Liang YY, Bao SJ, Li HL (2007) J Solid State Electrochem 11:571

    Article  CAS  Google Scholar 

  23. Tao F, Shen Y, Liang Y, Li H (2007) J Solid State Electrochem 11:853

    Article  CAS  Google Scholar 

  24. Zhao Y, Liu L, Xu J, Yanh J, Yan M, Jiang Z (2007) J Solid State Electrochem 11:283

    Article  CAS  Google Scholar 

  25. Su LH, Zhang XG, Liu Y (2007) Electrochemical performance of Co–Al layered double hydroxide nanosheets mixed with multiwall carbon nanotubes. J Solid State Electrochem. DOI 10.1007/s10008-007-0455-5

  26. Wang Y, Yuan A, Wang X (2007) Pseudocapacitive behaviors of nanostructured manganese dioxide/carbon nanotubes composite electrodes in mild aqueous electrolytes: effects of electrolytes and current collectors. J Solid State Electrochem. DOI 10.1007/s10008-007-0445-7

  27. Hong JI, Yeo IH, Paik WK (2001) J Electrochem Soc 148:A156

    Article  CAS  Google Scholar 

  28. Mallouki M, Tran-Van F, Sarrazin C, Simon P, Daffos B, De A, Chevrot C, Fauvarque JF (2007) J Solid State Electrochem 11:398

    Article  CAS  Google Scholar 

  29. Lin C, Ritter JA, Popov BN, White RE (1999) J Electrochem Soc 146:3168

    Article  CAS  Google Scholar 

  30. Lin C, Popov BN, Ploehn HJ (2000) J Electrochem Soc 149:A167

    Article  Google Scholar 

  31. Farsi H, Gobal F (2007) J Solid State Electrochem 11:1085

    Article  CAS  Google Scholar 

  32. Nagarajan GS, Van Zee JW, Spotnitz RM (1998) J Electrochem Soc 145:771

    Article  CAS  Google Scholar 

  33. Yu AB, Zou RP, Standish N (1996) Ind Eng Chem Res 35:3730

    Article  CAS  Google Scholar 

  34. Kim H, Popov BN (2003) J Electrochem Soc 150:A1153

    Article  CAS  Google Scholar 

  35. Newman JS (2004) Electrochemical systems, 3rd edn. Prentice-Hall Inc., New York

    Google Scholar 

  36. White RE, Lorimer SE, Dardy R (1983) J Electrochem Soc 130:1123

    Article  CAS  Google Scholar 

  37. J. W. Evans and P. Kar (2008) Notes on BAND and LISOLV. www.mse.berkeley.edu/Groups/Evans/pritish/BandandLisolvNotes.doc

  38. Pillay B, Newman J (1996) J Electrochem Soc 143:3791

    Article  Google Scholar 

  39. Pollak FH, O’Grady WE (1985) J Electrochem Soc 132:2385

    Article  Google Scholar 

  40. Trasatti S, Lodi G (1980) Properties of conductive transition metal oxides with rutiel-type structure. In: Trasatti S (ed) Electrodes of conductive metalic oxides—part A. Elsevier, New York, pp 301–358

    Google Scholar 

  41. Darling HE (1964) J Chem Eng Data 9:421

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Farsi.

Additional information

This paper has been presented in IBA (International Battery Materials Association) 2007 Conference, Shenzhen, China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farsi, H., Gobal, F. A mathematical model of nanoparticulate mixed oxide pseudocapacitors; part I: model description and particle size effects. J Solid State Electrochem 13, 433–443 (2009). https://doi.org/10.1007/s10008-008-0576-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0576-5

Keywords

Navigation